GIFT

Supplement S2: Complete Derivations (Dimensionless)

Lean 4 Verified

Mathematical Proofs for All 18 PROVEN Dimensionless Relations

This supplement provides complete mathematical proofs for all dimensionless predictions in the GIFT framework. Each derivation proceeds from topological definitions to exact numerical predictions.

Status: Complete (18 PROVEN relations)

The topological constants that determine these relations produce an exactly solvable geometric structure (see S1, Section 12).


Table of Contents


Part 0: Derivation Philosophy

0. What “Derivation” Means in GIFT

Before presenting derivations, we clarify the logical structure:

0.1 Inputs vs Outputs

Inputs (taken as given):

Outputs (derived from inputs):

0.2 What We Do NOT Claim

0.3 What We DO Claim

0.4 Torsion Independence

Important: All 18 predictions use only topological invariants. The torsion T does not appear in any formula. Therefore:


Part I: Foundations

1. Status Classification

Status Criterion
PROVEN Complete mathematical proof, exact result from topology
PROVEN (Lean) Verified by Lean 4 kernel with Mathlib (machine-checked)
TOPOLOGICAL Direct consequence of manifold structure

2. Notation

Symbol Value Definition    
dim(E₈) 248 E₈ Lie algebra dimension    
rank(E₈) 8 E₈ Cartan subalgebra dimension    
dim(G₂) 14 G₂ holonomy group dimension    
dim(K₇) 7 Internal manifold dimension    
b₂(K₇) 21 Second Betti number    
b₃(K₇) 77 Third Betti number    
H* 99 Effective cohomology = b₂ + b₃ + 1    
dim(J₃(O)) 27 Exceptional Jordan algebra dimension    
N_gen 3 Number of fermion generations    
p₂ 2 Binary duality parameter    
Weyl 5 Weyl factor from W(E₈)  

Part II: Foundational Theorems

3. Relation #1: Generation Number N_gen = 3

Statement: The number of fermion generations is exactly 3.

Classification: PROVEN (three independent derivations)

Proof Method 1: Fundamental Topological Constraint

Theorem: For G₂ holonomy manifold K₇ with E₈ gauge structure:

\[(\text{rank}(E_8) + N_{\text{gen}}) \cdot b_2(K_7) = N_{\text{gen}} \cdot b_3(K_7)\]

Derivation: \((8 + N_{\text{gen}}) \times 21 = N_{\text{gen}} \times 77\) \(168 + 21 \cdot N_{\text{gen}} = 77 \cdot N_{\text{gen}}\) \(168 = 56 \cdot N_{\text{gen}}\) \(N_{\text{gen}} = \frac{168}{56} = 3\)

Verification:

Proof Method 2: Atiyah-Singer Index Theorem

\[\text{Index}(D_A) = \left( 77 - \frac{8}{3} \times 21 \right) \times \frac{1}{7} = 3\]

Status: PROVEN ∎


4. Relation #2: Hierarchy Parameter τ = 3472/891

Statement: The hierarchy parameter is exactly rational.

Classification: PROVEN

Proof

Step 1: Definition from topological integers \(\tau := \frac{\dim(E_8 \times E_8) \cdot b_2(K_7)}{\dim(J_3(\mathbb{O})) \cdot H^*}\)

Step 2: Substitute values \(\tau = \frac{496 \times 21}{27 \times 99} = \frac{10416}{2673}\)

Step 3: Reduce \(\gcd(10416, 2673) = 3\) \(\tau = \frac{3472}{891}\)

Step 4: Prime factorization \(\tau = \frac{2^4 \times 7 \times 31}{3^4 \times 11}\)

Step 5: Numerical value \(\tau = 3.8967452300785634...\)

Status: PROVEN ∎


5. Relation #3: Torsion Capacity κ_T = 1/61

Statement: The topological torsion capacity equals exactly 1/61.

Classification: TOPOLOGICAL (structural parameter, not physical prediction)

Proof

Step 1: Define from cohomology \(61 = b_3(K_7) - \dim(G_2) - p_2 = 77 - 14 - 2 = 61\)

Step 2: Formula \(\kappa_T = \frac{1}{b_3 - \dim(G_2) - p_2} = \frac{1}{61}\)

Step 3: Geometric interpretation

Clarification

Quantity Definition Value
κ_T Topological capacity 1/61 (fixed)
T_analytical Realized torsion for φ = c × φ₀ 0 (exact)
T_physical Effective torsion for interactions Open question

Role in predictions: κ_T does NOT appear in any of the 18 dimensionless prediction formulas. It is a structural parameter characterizing K₇, not a physical observable.

Compatibility: T_analytical = 0 satisfies Joyce’s bound (‖T‖ < 0.0288) with infinite margin.

Status: TOPOLOGICAL (structural, not predictive) ∎


6. Relation #4: Metric Determinant det(g) = 65/32

Statement: The K₇ metric determinant is exactly 65/32.

Classification: TOPOLOGICAL

Proof

Step 1: Define from topological structure \(\det(g) = p_2 + \frac{1}{b_2 + \dim(G_2) - N_{gen}}\)

Step 2: Compute denominator \(b_2 + \dim(G_2) - N_{gen} = 21 + 14 - 3 = 32\)

Step 3: Compute determinant \(\det(g) = 2 + \frac{1}{32} = \frac{65}{32}\)

Step 4: Alternative derivation \(\det(g) = \frac{\text{Weyl} \times (\text{rank}(E_8) + \text{Weyl})}{2^5} = \frac{5 \times 13}{32} = \frac{65}{32}\)

Verification: The analytical metric g = (65/32)^{1/7} x I7 has det(g) = [(65/32)^{1/7}]^7 = 65/32 exactly, confirming the topological formula.

Status: TOPOLOGICAL ∎


Part III: Gauge Sector

7. Relation #5: Weinberg Angle sin²θ_W = 3/13

Statement: The weak mixing angle has exact rational form 3/13.

Classification: PROVEN

Proof

Step 1: Define ratio from Betti numbers \(\sin^2\theta_W = \frac{b_2(K_7)}{b_3(K_7) + \dim(G_2)} = \frac{21}{77 + 14} = \frac{21}{91}\)

Step 2: Simplify \(\gcd(21, 91) = 7\) \(\sin^2\theta_W = \frac{3}{13} = 0.230769...\)

Step 3: Experimental comparison

Quantity Value
Experimental (PDG 2024) 0.23122 ± 0.00004
GIFT prediction 0.230769
Deviation 0.195%

Status: PROVEN ∎


8. Relation #6: Strong Coupling α_s = √2/12

Statement: The strong coupling at M_Z scale.

Classification: TOPOLOGICAL

Proof

Formula: \(\alpha_s(M_Z) = \frac{\sqrt{2}}{\dim(G_2) - p_2} = \frac{\sqrt{2}}{14 - 2} = \frac{\sqrt{2}}{12}\)

Components:

Numerical value: α_s = 0.117851

Experimental comparison:

Quantity Value
Experimental 0.1179 ± 0.0009
GIFT prediction 0.11785
Deviation 0.042%

Status: TOPOLOGICAL ∎


Part IV: Lepton Sector

9. Relation #7: Koide Parameter Q = 2/3

Statement: The Koide parameter equals exactly 2/3.

Classification: PROVEN

Proof

Formula: \(Q_{\text{Koide}} = \frac{\dim(G_2)}{b_2(K_7)} = \frac{14}{21} = \frac{2}{3}\)

Physical definition: \(Q = \frac{m_e + m_\mu + m_\tau}{(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2}\)

Experimental comparison:

Quantity Value
Experimental 0.666661 ± 0.000007
GIFT prediction 0.666667
Deviation 0.0009%

Status: PROVEN ∎


10. Relation #8: Tau-Electron Mass Ratio m_τ/m_e = 3477

Statement: The tau-electron mass ratio is exactly 3477.

Classification: PROVEN

Proof

Formula: \(\frac{m_\tau}{m_e} = \dim(K_7) + 10 \cdot \dim(E_8) + 10 \cdot H^*\) \(= 7 + 10 \times 248 + 10 \times 99 = 7 + 2480 + 990 = 3477\)

Prime factorization: \(3477 = 3 \times 19 \times 61 = N_{gen} \times prime(8) \times \kappa_T^{-1}\)

Experimental comparison:

Quantity Value
Experimental 3477.15 ± 0.05
GIFT prediction 3477 (exact)
Deviation 0.0043%

Status: PROVEN ∎


11. Relation #9: Muon-Electron Mass Ratio

Statement: m_μ/m_e = 27^φ

Classification: TOPOLOGICAL

Proof

Formula: \(\frac{m_\mu}{m_e} = [\dim(J_3(\mathbb{O}))]^\phi = 27^\phi = 207.012\)

Components:

Experimental comparison:

Quantity Value
Experimental 206.768
GIFT prediction 207.01
Deviation 0.1179%

Status: TOPOLOGICAL ∎


Part V: Quark Sector

12. Relation #10: Strange-Down Ratio m_s/m_d = 20

Statement: The strange-down quark mass ratio is exactly 20.

Classification: PROVEN

Proof

Formula: \(\frac{m_s}{m_d} = p_2^2 \times \text{Weyl} = 4 \times 5 = 20\)

Geometric interpretation:

Experimental comparison:

Quantity Value
Experimental 20.0 ± 1.0
GIFT prediction 20 (exact)
Deviation 0.00%

Status: PROVEN ∎


Part VI: Neutrino Sector

13. Relation #11: CP Violation Phase δ_CP = 197°

Statement: The CP violation phase is exactly 197°.

Classification: PROVEN

Proof

Formula: \(\delta_{CP} = \dim(K_7) \cdot \dim(G_2) + H^* = 7 \times 14 + 99 = 98 + 99 = 197°\)

Experimental comparison:

Quantity Value
Experimental (T2K + NOνA) 197° ± 24°
GIFT prediction 197° (exact)
Deviation 0.00%

Note: DUNE (2034-2039) will test to ±5° precision. Hyper-Kamiokande provides independent verification starting ~2034.

Status: PROVEN ∎


14. Relation #12: Reactor Mixing Angle θ₁₃ = π/21

Statement: The reactor neutrino mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\theta_{13} = \frac{\pi}{b_2(K_7)} = \frac{\pi}{21} = 8.571°\)

Experimental comparison:

Quantity Value
Experimental (NuFIT 5.3) 8.54° ± 0.12°
GIFT prediction 8.571°
Deviation 0.368%

Status: TOPOLOGICAL ∎


15. Relation #13: Atmospheric Mixing Angle θ₂₃

Statement: The atmospheric neutrino mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\theta_{23} = \frac{\text{rank}(E_8) + b_3(K_7)}{H^*} \text{ radians} = \frac{85}{99} = 49.193°\)

Experimental comparison:

Quantity Value
Experimental (NuFIT 5.3) 49.3° ± 1.0°
GIFT prediction 49.193°
Deviation 0.216%

Status: TOPOLOGICAL ∎


16. Relation #14: Solar Mixing Angle θ₁₂

Statement: The solar neutrino mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\theta_{12} = \arctan\left(\sqrt{\frac{\delta}{\gamma_{\text{GIFT}}}}\right) = 33.419°\)

Components:

Derivation of γ_GIFT: \(\gamma_{\text{GIFT}} = \frac{2 \cdot \text{rank}(E_8) + 5 \cdot H^*}{10 \cdot \dim(G_2) + 3 \cdot \dim(E_8)} = \frac{511}{884}\)

Experimental comparison:

Quantity Value
Experimental (NuFIT 5.3) 33.41° ± 0.75°
GIFT prediction 33.40°
Deviation 0.030%

Status: TOPOLOGICAL ∎


Part VII: Higgs & Cosmology

17. Relation #15: Higgs Coupling λ_H = √17/32

Statement: The Higgs quartic coupling has explicit geometric origin.

Classification: PROVEN

Proof

Formula: \(\lambda_H = \frac{\sqrt{\dim(G_2) + N_{gen}}}{2^{\text{Weyl}}} = \frac{\sqrt{14 + 3}}{2^5} = \frac{\sqrt{17}}{32}\)

Properties of 17:

Numerical value: λ_H = 0.128847

Experimental comparison:

Quantity Value
Experimental 0.129 ± 0.003
GIFT prediction 0.12885
Deviation 0.119%

Status: PROVEN ∎


18. Relation #16: Dark Energy Density Ω_DE

Statement: The dark energy density fraction.

Classification: PROVEN

Proof

Formula: \(\Omega_{DE} = \ln(p_2) \cdot \frac{b_2 + b_3}{H^*} = \ln(2) \cdot \frac{98}{99} = 0.686146\)

Binary information origin of ln(2): \(\ln(p_2) = \ln(2)\) \(\ln\left(\frac{\dim(G_2)}{\dim(K_7)}\right) = \ln(2)\)

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.6847 ± 0.0073
GIFT prediction 0.6861
Deviation 0.211%

Status: PROVEN ∎


19. Relation #17: Spectral Index n_s

Statement: The primordial scalar spectral index.

Classification: PROVEN

Proof

Formula: \(n_s = \frac{\zeta(D_{bulk})}{\zeta(\text{Weyl})} = \frac{\zeta(11)}{\zeta(5)} = 0.9649\)

Components:

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.9649 ± 0.0042
GIFT prediction 0.9649
Deviation 0.004%

Status: PROVEN ∎


20. Relation #18: Fine Structure Constant α⁻¹

Statement: The inverse fine structure constant.

Classification: TOPOLOGICAL

Proof

Formula: \(\alpha^{-1}(M_Z) = \frac{\dim(E_8) + \text{rank}(E_8)}{2} + \frac{H^*}{D_{bulk}} + \det(g) \cdot \kappa_T\) \(= 128 + 9 + \frac{65}{32} \times \frac{1}{61} = 137.033\)

Components:

Experimental comparison:

Quantity Value
Experimental 137.035999
GIFT prediction 137.033
Deviation 0.002%

Status: TOPOLOGICAL ∎


Part VIII: Summary Table

21. The 18 PROVEN Dimensionless Relations

Note: All predictions use only topological invariants (b2, b3, dim(G2), etc.). None depend on the realized torsion value T.

# Relation Formula Value Exp. Dev. Status
1 N_gen Atiyah-Singer 3 3 exact PROVEN
2 τ 496×21/(27×99) 3472/891 - - PROVEN
3 κ_T 1/(77-14-2) 1/61 - - STRUCTURAL*
4 det(g) 5×13/32 65/32 - - TOPOLOGICAL
5 sin²θ_W 21/91 3/13 0.23122 0.195% PROVEN
6 α_s √2/12 0.11785 0.1179 0.042% TOPOLOGICAL
7 Q_Koide 14/21 2/3 0.666661 0.0009% PROVEN
8 m_τ/m_e 7+2480+990 3477 3477.15 0.0043% PROVEN
9 m_μ/m_e 27^φ 207.01 206.768 0.118% TOPOLOGICAL
10 m_s/m_d 4×5 20 20.0 0.00% PROVEN
11 δ_CP 7×14+99 197° 197° 0.00% PROVEN
12 θ₁₃ π/21 8.57° 8.54° 0.368% TOPOLOGICAL
13 θ₂₃ (rank+b3)/H* 49.19° 49.3° 0.216% TOPOLOGICAL
14 θ₁₂ arctan(…) 33.40° 33.41° 0.030% TOPOLOGICAL
15 λ_H √17/32 0.1288 0.129 0.119% PROVEN
16 Ω_DE ln(2)×(b2+b3)/H* 0.6861 0.6847 0.211% PROVEN
17 n_s ζ(11)/ζ(5) 0.9649 0.9649 0.004% PROVEN
18 α⁻¹ 128+9+corr 137.033 137.036 0.002% TOPOLOGICAL

*κ_T is a structural parameter (capacity), not a physical prediction. It does not appear in other formulas.


22. Deviation Statistics

Range Count Percentage
0.00% (exact) 4 22%
<0.01% 3 17%
0.01-0.1% 4 22%
0.1-0.5% 7 39%

Mean deviation: 0.087%


23. Statistical Uniqueness of (b₂=21, b₃=77)

A critical question for any unified framework is whether the specific topological parameters represent overfitting. We conducted exhaustive validation to address this concern.

Methodology

Results

Metric Value
GIFT rank #1 out of 19,100
GIFT mean deviation 0.23%
Second-best (b₂=21, b₃=76) 0.50%
Improvement factor 2.2×
LEE-corrected significance >4σ

Neighborhood Analysis

              b₃=75    b₃=76    b₃=77    b₃=78    b₃=79
     b₂=20    1.52%    1.50%    1.48%    1.66%    1.95%
     b₂=21    0.81%    0.50%   [0.23%]   0.50%    0.79%
     b₂=22    1.88%    1.57%    1.37%    1.38%    1.39%

The configuration (b₂=21, b₃=77) occupies a sharp minimum: moving one unit in any direction more than doubles the deviation.

Interpretation

The GIFT configuration is not merely a good choice; it is the unique optimum in the tested parameter space. This does not explain why nature selected this geometry, but establishes the choice is statistically exceptional rather than arbitrary.

Complete methodology: UNIQUENESS_TEST_REPORT.md


References

  1. Joyce, D. D. (2000). Compact Manifolds with Special Holonomy. Oxford.
  2. Atiyah, M. F., Singer, I. M. (1968). The index of elliptic operators.
  3. Particle Data Group (2024). Review of Particle Physics.
  4. NuFIT 5.3 (2024). Global neutrino oscillation analysis.
  5. Planck Collaboration (2020). Cosmological parameters.

GIFT Framework - Supplement S2 Complete Derivations: 18 Dimensionless Relations