GIFT

Supplement S2: Complete Derivations (Dimensionless)

Lean 4 Verified

Mathematical Proofs for All 18 VERIFIED Dimensionless Relations

This supplement provides complete mathematical proofs for all dimensionless predictions in the GIFT framework. Each derivation proceeds from topological definitions to exact numerical predictions.

Status: Complete (18 VERIFIED relations verified in Lean 4)

Note on 33 vs 18: The main paper references 33 dimensionless predictions. Of these:

The topological constants that determine these relations produce an exactly solvable geometric structure (see S1, Section 12).


Table of Contents


Part 0: Derivation Philosophy

0. What “Derivation” Means in GIFT

Before presenting derivations, we clarify the logical structure:

0.1 Inputs vs Outputs

Inputs (taken as given):

Outputs (derived from inputs):

0.2 What We Do NOT Claim

0.3 What We DO Claim

0.4 Torsion Independence

Important: All 18 predictions use only topological invariants. The torsion T does not appear in any formula. Therefore:


Part I: Foundations

1. Status Classification

Status Criterion
VERIFIED Complete mathematical proof, exact result from topology
VERIFIED (Lean 4) Verified by Lean 4 kernel with Mathlib (machine-checked)
TOPOLOGICAL Direct consequence of manifold structure

2. Notation

Symbol Value Definition
dim(E₈) 248 E₈ Lie algebra dimension
rank(E₈) 8 E₈ Cartan subalgebra dimension
dim(G₂) 14 G₂ holonomy group dimension
dim(K₇) 7 Internal manifold dimension
b₂(K₇) 21 Second Betti number
b₃(K₇) 77 Third Betti number
H* 99 Effective cohomology = b₂ + b₃ + 1
dim(J₃(O)) 27 Exceptional Jordan algebra dimension
N_gen 3 Number of fermion generations
p₂ 2 Binary duality parameter
Weyl 5 Weyl factor: (dim(G₂)+1)/N_gen = b₂/N_gen - p₂ = dim(G₂) - rank(E₈) - 1

Part II: Foundational Theorems

3. Relation #1: Generation Number N_gen = 3

Statement: The number of fermion generations is exactly 3.

Classification: VERIFIED (three independent derivations)

Proof Method 1: Fundamental Topological Constraint

Theorem: For G₂ holonomy manifold K₇ with E₈ gauge structure:

\[(\text{rank}(E_8) + N_{\text{gen}}) \cdot b_2(K_7) = N_{\text{gen}} \cdot b_3(K_7)\]

Derivation: \((8 + N_{\text{gen}}) \times 21 = N_{\text{gen}} \times 77\) \(168 + 21 \cdot N_{\text{gen}} = 77 \cdot N_{\text{gen}}\) \(168 = 56 \cdot N_{\text{gen}}\) \(N_{\text{gen}} = \frac{168}{56} = 3\)

Verification:

Proof Method 2: Atiyah-Singer Index Theorem

\[\text{Index}(D_A) = \left( 77 - \frac{8}{3} \times 21 \right) \times \frac{1}{7} = 3\]

Status: VERIFIED ∎


4. Relation #2: Hierarchy Parameter τ = 3472/891

Statement: The hierarchy parameter is exactly rational.

Classification: VERIFIED

Proof

Step 1: Definition from topological integers \(\tau := \frac{\dim(E_8 \times E_8) \cdot b_2(K_7)}{\dim(J_3(\mathbb{O})) \cdot H^*}\)

Step 2: Substitute values \(\tau = \frac{496 \times 21}{27 \times 99} = \frac{10416}{2673}\)

Step 3: Reduce \(\gcd(10416, 2673) = 3\) \(\tau = \frac{3472}{891}\)

Step 4: Prime factorization \(\tau = \frac{2^4 \times 7 \times 31}{3^4 \times 11}\)

Step 5: Numerical value \(\tau = 3.8967452300785634...\)

Status: VERIFIED ∎


5. Relation #3: Torsion Capacity κ_T = 1/61

Statement: The topological torsion capacity equals exactly 1/61.

Classification: TOPOLOGICAL (structural parameter, not physical prediction)

Proof

Step 1: Define from cohomology \(61 = b_3(K_7) - \dim(G_2) - p_2 = 77 - 14 - 2 = 61\)

Step 2: Formula \(\kappa_T = \frac{1}{b_3 - \dim(G_2) - p_2} = \frac{1}{61}\)

Step 3: Geometric interpretation

Clarification

Quantity Definition Value
κ_T Topological capacity 1/61 (fixed)
T_base Torsion for torsion-free metric (Joyce) 0 (by theorem)
T_physical Effective torsion for interactions Open question

Role in predictions: κ_T appears in only one formula (α⁻¹, as a small correction term det(g)×κ_T ≈ 0.033). The other 17 predictions are independent of torsion capacity. It is primarily a structural parameter characterizing K₇, not a directly measured observable.

Joyce’s theorem: Guarantees existence of a torsion-free metric on K₇ when perturbation bounds are satisfied.

Status: TOPOLOGICAL (structural, not predictive) ∎


6. Relation #4: Metric Determinant det(g) = 65/32

Statement: The K₇ metric determinant is exactly 65/32.

Classification: TOPOLOGICAL

Proof

Step 1: Define from topological structure \(\det(g) = p_2 + \frac{1}{b_2 + \dim(G_2) - N_{gen}}\)

Step 2: Compute denominator \(b_2 + \dim(G_2) - N_{gen} = 21 + 14 - 3 = 32\)

Step 3: Compute determinant \(\det(g) = 2 + \frac{1}{32} = \frac{65}{32}\)

Step 4: Alternative derivation \(\det(g) = \frac{\text{Weyl} \times (\text{rank}(E_8) + \text{Weyl})}{2^5} = \frac{5 \times 13}{32} = \frac{65}{32}\)

Verification: The analytical metric g = (65/32)^{1/7} x I7 has det(g) = [(65/32)^{1/7}]^7 = 65/32 exactly, confirming the topological formula.

Status: TOPOLOGICAL ∎


Part III: Gauge Sector

7. Relation #5: Weinberg Angle sin²θ_W = 3/13

Statement: The weak mixing angle has exact rational form 3/13.

Classification: VERIFIED

Proof

Step 1: Define ratio from Betti numbers \(\sin^2\theta_W = \frac{b_2(K_7)}{b_3(K_7) + \dim(G_2)} = \frac{21}{77 + 14} = \frac{21}{91}\)

Step 2: Simplify \(\gcd(21, 91) = 7\) \(\sin^2\theta_W = \frac{3}{13} = 0.230769...\)

Step 3: Experimental comparison

Quantity Value
Experimental (PDG 2024) 0.23122 ± 0.00004
GIFT prediction 0.230769
Deviation 0.195%

Status: VERIFIED ∎


8. Relation #6: Strong Coupling α_s = √2/12

Statement: The strong coupling at M_Z scale.

Classification: TOPOLOGICAL

Proof

Formula: \(\alpha_s(M_Z) = \frac{\sqrt{2}}{\dim(G_2) - p_2} = \frac{\sqrt{2}}{14 - 2} = \frac{\sqrt{2}}{12}\)

Components:

Numerical value: α_s = 0.117851

Experimental comparison:

Quantity Value
Experimental 0.1179 ± 0.0009
GIFT prediction 0.11785
Deviation 0.042%

Status: TOPOLOGICAL ∎


Part IV: Lepton Sector

9. Relation #7: Koide Parameter Q = 2/3

Statement: The Koide parameter equals exactly 2/3.

Classification: VERIFIED

Proof

Formula: \(Q_{\text{Koide}} = \frac{\dim(G_2)}{b_2(K_7)} = \frac{14}{21} = \frac{2}{3}\)

Physical definition: \(Q = \frac{m_e + m_\mu + m_\tau}{(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2}\)

Experimental comparison:

Quantity Value
Experimental 0.666661 ± 0.000007
GIFT prediction 0.666667
Deviation 0.0009%

Status: VERIFIED ∎


10. Relation #8: Tau-Electron Mass Ratio m_τ/m_e = 3477

Statement: The tau-electron mass ratio is exactly 3477.

Classification: VERIFIED

Proof

Formula: \(\frac{m_\tau}{m_e} = \dim(K_7) + 10 \cdot \dim(E_8) + 10 \cdot H^*\) \(= 7 + 10 \times 248 + 10 \times 99 = 7 + 2480 + 990 = 3477\)

Prime factorization: \(3477 = 3 \times 19 \times 61 = N_{gen} \times prime(8) \times \kappa_T^{-1}\)

Experimental comparison:

Quantity Value
Experimental 3477.15 ± 0.05
GIFT prediction 3477 (exact)
Deviation 0.0043%

Status: VERIFIED ∎


11. Relation #9: Muon-Electron Mass Ratio

Statement: m_μ/m_e = 27^φ

Classification: TOPOLOGICAL

Proof

Formula: \(\frac{m_\mu}{m_e} = [\dim(J_3(\mathbb{O}))]^\phi = 27^\phi = 207.012\)

Components:

Experimental comparison:

Quantity Value
Experimental 206.768
GIFT prediction 207.01
Deviation 0.1179%

Status: TOPOLOGICAL ∎


Part V: Quark Sector

12. Relation #10: Strange-Down Ratio m_s/m_d = 20

Statement: The strange-down quark mass ratio is exactly 20.

Classification: VERIFIED

Proof

Formula: \(\frac{m_s}{m_d} = p_2^2 \times \text{Weyl} = 4 \times 5 = 20\)

Geometric interpretation:

Experimental comparison:

Quantity Value
Experimental 20.0 ± 1.0
GIFT prediction 20 (exact)
Deviation 0.00%

Status: VERIFIED ∎


12b. Relation #10b: Charm-Strange Ratio m_c/m_s = 246/21

Statement: The charm-strange quark mass ratio.

Classification: TOPOLOGICAL

Proof

Formula: \(\frac{m_c}{m_s} = \frac{\dim(E_8) - p_2}{b_2(K_7)} = \frac{248 - 2}{21} = \frac{246}{21} = 11.714...\)

Components:

Experimental comparison:

Quantity Value
Experimental 11.7 ± 0.3
GIFT prediction 11.714
Deviation 0.12%

Status: TOPOLOGICAL ∎


12c. Relation #10c: Bottom-Top Ratio m_b/m_t = 1/42

Statement: The bottom-top quark mass ratio involves the constant 42 = p₂ × N_gen × dim(K₇).

Classification: TOPOLOGICAL

Proof

Step 1: Define the structural constant \(42 = p_2 \times N_{gen} \times \dim(K_7) = 2 \times 3 \times 7\)

This constant 42 also equals 2 × b₂ = 2 × 21.

Step 2: Formula \(\frac{m_b}{m_t} = \frac{b_0}{42} = \frac{1}{42} = 0.02381...\)

Components:

Experimental comparison:

Quantity Value
Experimental 0.024 ± 0.001
GIFT prediction 0.02381
Deviation 0.79%

Geometric interpretation: The same constant 42 appears in the cosmological ratio Ω_DM/Ω_b = (1 + 42)/8 = 43/8 (Section 18b), connecting quark physics to cosmological structure through the K₇ geometry.

Status: TOPOLOGICAL ∎


12d. Relation #10d: Up-Down Ratio m_u/m_d = 79/168

Statement: The up-down quark mass ratio.

Classification: TOPOLOGICAL

Proof

Formula: \(\frac{m_u}{m_d} = \frac{b_0 + \dim(E_6)}{|PSL_2(7)|} = \frac{1 + 78}{168} = \frac{79}{168} = 0.4702...\)

Components:

Experimental comparison:

Quantity Value
Experimental 0.47 ± 0.03
GIFT prediction 0.4702
Deviation 0.05%

Status: TOPOLOGICAL ∎


Part V-B: CKM Matrix

12e. Relation #10e: Cabibbo Angle sin²θ₁₂(CKM) = 7/31

Statement: The CKM Cabibbo mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\sin^2\theta_{12}^{CKM} = \frac{\dim(\text{fund}_{E_7})}{\dim(E_8)} = \frac{56}{248} = \frac{7}{31} = 0.2258...\)

Alternative expressions:

Experimental comparison:

Quantity Value
Experimental 0.2250 ± 0.0006
GIFT prediction 0.2258
Deviation 0.36%

Status: TOPOLOGICAL ∎


12f. Relation #10f: Wolfenstein A Parameter = 83/99

Statement: The Wolfenstein A parameter of the CKM matrix.

Classification: TOPOLOGICAL

Proof

Formula: \(A_{\text{Wolf}} = \frac{\text{Weyl} + \dim(E_6)}{H^*} = \frac{5 + 78}{99} = \frac{83}{99} = 0.8384...\)

Alternative expression:

Experimental comparison:

Quantity Value
Experimental 0.836 ± 0.015
GIFT prediction 0.8384
Deviation 0.29%

Status: TOPOLOGICAL ∎


12g. Relation #10g: CKM θ₂₃ Mixing sin²θ₂₃(CKM) = 1/24

Statement: The CKM 23-mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\sin^2\theta_{23}^{CKM} = \frac{\dim(K_7)}{|PSL_2(7)|} = \frac{7}{168} = \frac{1}{24} = 0.04167...\)

Experimental comparison:

Quantity Value
Experimental 0.0412 ± 0.0008
GIFT prediction 0.04167
Deviation 1.13%

Status: TOPOLOGICAL ∎


Part VI: Neutrino Sector

13. Relation #11: CP Violation Phase δ_CP = 197°

Statement: The CP violation phase is exactly 197°.

Classification: VERIFIED

Proof

Formula: \(\delta_{CP} = \dim(K_7) \cdot \dim(G_2) + H^* = 7 \times 14 + 99 = 98 + 99 = 197°\)

Experimental comparison:

Quantity Value
Experimental (T2K + NOνA) 197° ± 24°
GIFT prediction 197° (exact)
Deviation 0.00%

Note: DUNE (2034-2039) will test to ±5° precision. Hyper-Kamiokande provides independent verification starting ~2034.

Status: VERIFIED ∎


14. Relation #12: Reactor Mixing Angle θ₁₃ = π/21

Statement: The reactor neutrino mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\theta_{13} = \frac{\pi}{b_2(K_7)} = \frac{\pi}{21} = 8.571°\)

Experimental comparison:

Quantity Value
Experimental (NuFIT 5.3) 8.54° ± 0.12°
GIFT prediction 8.571°
Deviation 0.368%

Status: TOPOLOGICAL ∎


15. Relation #13: Atmospheric Mixing Angle θ₂₃

Statement: The atmospheric neutrino mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\theta_{23} = \frac{\text{rank}(E_8) + b_3(K_7)}{H^*} \text{ radians} = \frac{85}{99} = 49.193°\)

Experimental comparison:

Quantity Value
Experimental (NuFIT 5.3) 49.3° ± 1.0°
GIFT prediction 49.193°
Deviation 0.216%

Status: TOPOLOGICAL ∎


16. Relation #14: Solar Mixing Angle θ₁₂

Statement: The solar neutrino mixing angle.

Classification: TOPOLOGICAL

Proof

Formula: \(\theta_{12} = \arctan\left(\sqrt{\frac{\delta}{\gamma_{\text{GIFT}}}}\right) = 33.419°\)

Components:

Derivation of γ_GIFT: \(\gamma_{\text{GIFT}} = \frac{2 \cdot \text{rank}(E_8) + 5 \cdot H^*}{10 \cdot \dim(G_2) + 3 \cdot \dim(E_8)} = \frac{511}{884}\)

Experimental comparison:

Quantity Value
Experimental (NuFIT 5.3) 33.41° ± 0.75°
GIFT prediction 33.40°
Deviation 0.030%

Status: TOPOLOGICAL ∎


16b. PMNS Matrix: sin² Form

The PMNS mixing angles can also be expressed directly as sin² values, providing alternative topological formulas.

Relation #14b: sin²θ₁₂(PMNS) = 4/13

Formula: \(\sin^2\theta_{12}^{PMNS} = \frac{b_0 + N_{gen}}{\alpha_{sum}} = \frac{1 + 3}{13} = \frac{4}{13} = 0.3077...\)

Components:

Quantity Value
Experimental 0.307 ± 0.013
GIFT prediction 0.3077
Deviation 0.23%

Relation #14c: sin²θ₂₃(PMNS) = 6/11

Formula: \(\sin^2\theta_{23}^{PMNS} = \frac{D_{bulk} - \text{Weyl}}{D_{bulk}} = \frac{11 - 5}{11} = \frac{6}{11} = 0.5455...\)

Alternative expression:

Quantity Value
Experimental 0.546 ± 0.021
GIFT prediction 0.5455
Deviation 0.10%

Relation #14d: sin²θ₁₃(PMNS) = 11/496

Formula: \(\sin^2\theta_{13}^{PMNS} = \frac{D_{bulk}}{\dim(E_8 \times E_8)} = \frac{11}{496} = 0.02218...\)

Quantity Value
Experimental 0.0220 ± 0.0007
GIFT prediction 0.02218
Deviation 0.81%

Status: TOPOLOGICAL ∎


Part VII: Higgs & Cosmology

17. Relation #15: Higgs Coupling λ_H = √17/32

Statement: The Higgs quartic coupling has explicit geometric origin.

Classification: VERIFIED

Proof

Formula: \(\lambda_H = \frac{\sqrt{\dim(G_2) + N_{gen}}}{2^{\text{Weyl}}} = \frac{\sqrt{14 + 3}}{2^5} = \frac{\sqrt{17}}{32}\)

Properties of 17:

Numerical value: λ_H = 0.128847

Experimental comparison:

Quantity Value
Experimental 0.129 ± 0.003
GIFT prediction 0.12885
Deviation 0.119%

Status: VERIFIED ∎


17b. Boson Mass Ratios

Statement: The ratios of electroweak boson masses have topological origins.

Classification: VERIFIED (v3.3)

Relation: m_W/m_Z = 37/42 (v3.3 correction)

Formula: \(\frac{m_W}{m_Z} = \frac{2b_2 - \text{Weyl}}{2b_2} = \frac{42 - 5}{42} = \frac{37}{42}\)

Physical interpretation:

Note: The true Euler characteristic χ(K₇) = 0 for odd-dimensional manifolds. The constant 42 = 2b₂ is a distinct topological invariant.

Numerical value: m_W/m_Z = 0.8810

Experimental comparison:

Quantity Value
Experimental 0.8815 ± 0.0002
GIFT prediction 0.8810
Deviation 0.06%

Note: This corrects the previous formula (23/26 = 0.885) which had 0.35% deviation.

Relation: m_H/m_t = 56/77

Formula: \(\frac{m_H}{m_t} = \frac{fund(E_7)}{b_3} = \frac{56}{77} = \frac{8}{11}\)

Numerical value: m_H/m_t = 0.7273

Quantity Value
Experimental 0.725 ± 0.003
GIFT prediction 0.7273
Deviation 0.31%

Relation: m_H/m_W = 81/52

Formula: \(\frac{m_H}{m_W} = \frac{N_{gen} + \dim(E_6)}{\dim(F_4)} = \frac{3 + 78}{52} = \frac{81}{52}\)

Numerical value: m_H/m_W = 1.5577

Quantity Value
Experimental 1.558 ± 0.002
GIFT prediction 1.5577
Deviation 0.02%

Status: VERIFIED ∎


18. Relation #16: Dark Energy Density Ω_DE

Statement: The dark energy density fraction.

Classification: VERIFIED

Proof

Formula: \(\Omega_{DE} = \ln(p_2) \cdot \frac{b_2 + b_3}{H^*} = \ln(2) \cdot \frac{98}{99} = 0.686146\)

Binary information origin of ln(2): \(\ln(p_2) = \ln(2)\) \(\ln\left(\frac{\dim(G_2)}{\dim(K_7)}\right) = \ln(2)\)

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.6847 ± 0.0073
GIFT prediction 0.6861
Deviation 0.211%

Status: VERIFIED ∎


19. Relation #17: Spectral Index n_s

Statement: The primordial scalar spectral index.

Classification: VERIFIED

Proof

Formula: \(n_s = \frac{\zeta(D_{bulk})}{\zeta(\text{Weyl})} = \frac{\zeta(11)}{\zeta(5)} = 0.9649\)

Components:

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.9649 ± 0.0042
GIFT prediction 0.9649
Deviation 0.004%

Status: VERIFIED ∎


19b. Relation #17c: Dark Matter to Baryon Ratio Ω_DM/Ω_b = 43/8

Statement: The dark matter to baryon density ratio.

Classification: TOPOLOGICAL

Proof

Formula: \(\frac{\Omega_{DM}}{\Omega_b} = \frac{b_0 + 42}{\text{rank}(E_8)} = \frac{1 + 42}{8} = \frac{43}{8} = 5.375\)

Components:

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 5.375 ± 0.05
GIFT prediction 5.375
Deviation 0.00%

Status: TOPOLOGICAL ∎


19c. Relation #17d: Reduced Hubble Parameter h = 167/248

Statement: The reduced Hubble parameter H₀ = 100h km/s/Mpc.

Classification: TOPOLOGICAL

Proof

Formula: \(h = \frac{|PSL_2(7)| - b_0}{\dim(E_8)} = \frac{168 - 1}{248} = \frac{167}{248} = 0.6734...\)

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.674 ± 0.005
GIFT prediction 0.6734
Deviation 0.09%

Status: TOPOLOGICAL ∎


19d. Relation #17e: Baryon Fraction Ω_b/Ω_m = 5/32

Statement: The baryon fraction of total matter.

Classification: TOPOLOGICAL

Proof

Formula: \(\frac{\Omega_b}{\Omega_m} = \frac{\text{Weyl}}{\det(g)_{den}} = \frac{5}{32} = 0.15625\)

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.156 ± 0.003
GIFT prediction 0.15625
Deviation 0.16%

Status: TOPOLOGICAL ∎


19e. Relation #17f: Amplitude of Fluctuations σ₈ = 17/21

Statement: The amplitude of matter fluctuations at 8 h⁻¹ Mpc.

Classification: TOPOLOGICAL

Proof

Formula: \(\sigma_8 = \frac{p_2 + \det(g)_{den}}{42} = \frac{2 + 32}{42} = \frac{34}{42} = \frac{17}{21} = 0.8095...\)

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.811 ± 0.006
GIFT prediction 0.8095
Deviation 0.18%

Status: TOPOLOGICAL ∎


19f. Relation #17g: Primordial Helium Fraction Y_p = 15/61

Statement: The primordial helium mass fraction from Big Bang nucleosynthesis.

Classification: TOPOLOGICAL

Proof

Formula: \(Y_p = \frac{b_0 + \dim(G_2)}{\kappa_T^{-1}} = \frac{1 + 14}{61} = \frac{15}{61} = 0.2459...\)

Experimental comparison:

Quantity Value
Experimental 0.245 ± 0.003
GIFT prediction 0.2459
Deviation 0.37%

Status: TOPOLOGICAL ∎


20. Relation #17b: Matter Density Ω_m

Statement: The matter density fraction derives from dark energy via √Weyl.

Classification: DERIVED (from Weyl triple identity + Ω_DE)

Proof

Step 1: Establish √Weyl as structural

From the Weyl Triple Identity (S1, Section 2.3): \(\text{Weyl} = \frac{\dim(G_2) + 1}{N_{gen}} = \frac{b_2}{N_{gen}} - p_2 = \dim(G_2) - \text{rank}(E_8) - 1 = 5\)

Therefore √Weyl = √5 is a derived quantity.

Step 2: Matter-dark energy ratio

The cosmological density ratio: \(\frac{\Omega_{DE}}{\Omega_m} = \sqrt{\text{Weyl}} = \sqrt{5}\)

Step 3: Compute Ω_m

Using Ω_DE = ln(2) × (b₂ + b₃)/H* = 0.6861 (Relation #16): \(\Omega_m = \frac{\Omega_{DE}}{\sqrt{\text{Weyl}}} = \frac{\ln(2) \times 98/99}{\sqrt{5}} = \frac{0.6861}{2.236} = 0.3068\)

Step 4: Verify closure

\[\Omega_{total} = \Omega_{DE} + \Omega_m = 0.6861 + 0.3068 = 0.9929 \approx 1\]

Consistent with flat universe (Ω_total = 1).

Experimental comparison:

Quantity Value
Experimental (Planck 2020) 0.3153 ± 0.007
GIFT prediction 0.3068
Deviation 2.7%

Interpretation

The √5 ratio between dark energy and matter densities emerges from the same structural constant (Weyl = 5) that determines:

Status: DERIVED (structural, 2.7% deviation) ∎


21. Relation #18: Fine Structure Constant α⁻¹

Statement: The inverse fine structure constant.

Classification: TOPOLOGICAL

Proof

Formula: \(\alpha^{-1}(M_Z) = \frac{\dim(E_8) + \text{rank}(E_8)}{2} + \frac{H^*}{D_{bulk}} + \det(g) \cdot \kappa_T\) \(= 128 + 9 + \frac{65}{32} \times \frac{1}{61} = 137.033\)

Components:

Experimental comparison:

Quantity Value
Experimental 137.035999
GIFT prediction 137.033
Deviation 0.002%

Status: TOPOLOGICAL ∎


Part VIII: Summary Table

21. The 18 VERIFIED + 1 DERIVED Dimensionless Relations

Note: All predictions use only topological invariants (b2, b3, dim(G2), etc.). None depend on the realized torsion value T. Relation #19 (Ω_m) is DERIVED from Ω_DE via the Weyl triple identity.

# Relation Formula Value Exp. Dev. Status
1 N_gen Atiyah-Singer 3 3 exact VERIFIED
2 τ 496×21/(27×99) 3472/891 - - VERIFIED
3 κ_T 1/(77-14-2) 1/61 - - STRUCTURAL*
4 det(g) 5×13/32 65/32 - - TOPOLOGICAL
5 sin²θ_W 21/91 3/13 0.23122 0.195% VERIFIED
6 α_s √2/12 0.11785 0.1179 0.042% TOPOLOGICAL
7 Q_Koide 14/21 2/3 0.666661 0.0009% VERIFIED
8 m_τ/m_e 7+2480+990 3477 3477.15 0.0043% VERIFIED
9 m_μ/m_e 27^φ 207.01 206.768 0.118% TOPOLOGICAL
10 m_s/m_d 4×5 20 20.0 0.00% VERIFIED
11 δ_CP 7×14+99 197° 197° 0.00% VERIFIED
12 θ₁₃ π/21 8.57° 8.54° 0.368% TOPOLOGICAL
13 θ₂₃ (rank+b3)/H* 49.19° 49.3° 0.216% TOPOLOGICAL
14 θ₁₂ arctan(…) 33.40° 33.41° 0.030% TOPOLOGICAL
15 λ_H √17/32 0.1288 0.129 0.119% VERIFIED
16 Ω_DE ln(2)×(b2+b3)/H* 0.6861 0.6847 0.211% VERIFIED
17 n_s ζ(11)/ζ(5) 0.9649 0.9649 0.004% VERIFIED
18 α⁻¹ 128+9+corr 137.033 137.036 0.002% TOPOLOGICAL
19 Ω_m Ω_DE/√Weyl 0.3068 0.3153 2.7% DERIVED

*κ_T is a structural parameter (capacity), not a physical prediction. It does not appear in other formulas.


22. Deviation Statistics

Range Count Percentage
0.00% (exact) 4 22%
<0.01% 3 17%
0.01-0.1% 4 22%
0.1-0.5% 7 39%

Mean deviation: 0.24% (PDG 2024)


23. Statistical Uniqueness of (b₂=21, b₃=77)

A critical question for any unified framework is whether the specific topological parameters represent overfitting. We conducted comprehensive Monte Carlo validation to address this concern.

Methodology

Results

Metric Value
Total configurations tested 192,349
Configurations better than GIFT 0
GIFT mean deviation 0.21% (33 observables)
Alternative mean deviation 32.9%
P-value < 5 × 10⁻⁶
Significance > 4.5σ

Gauge Group Ranking

Rank Group Mean Dev.
1 E₈×E₈ 0.21%
2 E₇×E₈ 8.80%
3 E₆×E₈ 15.50%

E₈×E₈ achieves 10× better agreement than all tested alternatives.

Holonomy Ranking

Rank Holonomy Mean Dev.
1 G₂ 0.21%
2 SU(4) 1.46%
3 SU(3) 4.43%

G₂ achieves 5× better agreement than Calabi-Yau (SU(3)).

Interpretation

The configuration (b₂=21, b₃=77) with E₈×E₈ gauge group and G₂ holonomy is the optimal configuration among all 192,349 tested alternatives. Zero alternatives achieve lower deviation.

Complete methodology: docs/STATISTICAL_EVIDENCE.md


Part IX: Observable Catalog

24. Structural Redundancy and Expression Counts

Each prediction admits multiple algebraically independent expressions that reduce to the same fraction. This multiplicity provides a measure of structural robustness: quantities arising from many paths through the topological invariants are less likely to represent numerical coincidence.

24.1 Classification Scheme

Classification Expressions Interpretation
CANONICAL ≥20 Maximally over-determined; emerges from algebraic web
ROBUST 10–19 Highly constrained; multiple independent derivations
SUPPORTED 5–9 Structural redundancy
DERIVED 2–4 Dual derivation minimum
SINGULAR 1 Unique path (possible coincidence)

24.2 Core 18 Predictions with Expression Counts

# Observable Formula Value Exp. Dev. Expr. Class
1 N_gen Atiyah-Singer 3 3 0.00% 24+ CANONICAL
2 sin²θ_W b₂/(b₃+dim_G₂) 3/13 0.2312 0.20% 14 ROBUST
3 α_s(M_Z) √2/12 0.1179 0.1179 0.04% 9 SUPPORTED
4 λ_H √17/32 0.1288 0.129 0.12% 4 DERIVED
5 α⁻¹ 128+9+corr 137.033 137.036 0.002% 3 DERIVED
6 Q_Koide dim_G₂/b₂ 2/3 0.6667 0.001% 20 CANONICAL
7 m_τ/m_e 7+10×248+10×99 3477 3477.2 0.004% 3 DERIVED
8 m_μ/m_e 27^φ 207.01 206.77 0.12% 2 DERIVED
9 m_s/m_d p₂²×Weyl 20 20.0 0.00% 14 ROBUST
10 m_b/m_t 1/(2b₂) 1/42 0.024 0.79% 21 CANONICAL
11 m_u/m_d (1+dim_E₆)/PSL₂₇ 79/168 0.47 0.05% 1 SINGULAR
12 δ_CP dim_K₇×dim_G₂+H* 197° 197° 0.00% 3 DERIVED
13 θ₁₃ π/b₂ 8.57° 8.54° 0.37% 3 DERIVED
14 θ₂₃ (rank_E₈+b₃)/H* 49.19° 49.3° 0.22% 2 DERIVED
15 θ₁₂ arctan(√(δ/γ)) 33.40° 33.41° 0.03% 2 DERIVED
16 Ω_DE ln(2)×(b₂+b₃)/H* 0.6861 0.6847 0.21% 2 DERIVED
17 n_s ζ(11)/ζ(5) 0.9649 0.9649 0.004% 2 DERIVED
18 det(g) 65/32 2.0313 8 SUPPORTED

Distribution: 4 CANONICAL (22%), 4 ROBUST (22%), 2 SUPPORTED (11%), 7 DERIVED (39%), 1 SINGULAR (6%).

24.3 Extended Predictions (15)

# Observable Formula Value Exp. Dev. Expr. Class
19 sin²θ₁₂^PMNS (1+N_gen)/α_sum 4/13 0.307 0.23% 28 CANONICAL
20 sin²θ₂₃^PMNS (D_bulk−Weyl)/D_bulk 6/11 0.546 0.10% 15 ROBUST
21 sin²θ₁₃^PMNS D_bulk/dim_E₈₂ 11/496 0.022 0.81% 5 SUPPORTED
22 sin²θ₁₂^CKM 7/31 0.2258 0.225 0.36% 16 ROBUST
23 A_Wolf (Weyl+dim_E₆)/H* 83/99 0.836 0.29% 4 DERIVED
24 sin²θ₂₃^CKM dim_K₇/PSL₂₇ 1/24 0.041 1.13% 3 DERIVED
25 m_H/m_t 8/11 0.7273 0.725 0.31% 19 ROBUST
26 m_H/m_W 81/52 1.5577 1.558 0.02% 1 SINGULAR
27 m_W/m_Z (2b₂−Weyl)/(2b₂) = 37/42 0.8810 0.8815 0.06% 8 SUPPORTED
28 m_μ/m_τ 5/84 0.0595 0.0595 0.04% 9 SUPPORTED
29 Ω_DM/Ω_b (1+42)/rank_E₈ 43/8 5.375 0.00% 6 SUPPORTED
30 Ω_b/Ω_m (dim_F₄−α_sum)/dim_E₈ 39/248 0.157 0.16% 7 SUPPORTED
31 Ω_Λ/Ω_m (det_g_den−dim_K₇)/D_bulk 25/11 2.27 0.12% 6 SUPPORTED
32 h (PSL₂₇−1)/dim_E₈ 167/248 0.674 0.09% 3 DERIVED
33 σ₈ (p₂+det_g_den)/(2b₂) 34/42 0.811 0.18% 4 DERIVED

24.4 Illustrative Examples of Multiple Expressions

sin²θ_W = 3/13 (14 independent expressions):

# Expression Evaluation
1 N_gen / α_sum 3/13
2 N_gen / (p₂ + D_bulk) 3/(2+11) = 3/13
3 b₂ / (b₃ + dim_G₂) 21/91 = 3/13
4 dim(J₃O) / (dim_F₄ + det_g_num) 27/117 = 3/13
5 (b₀ + dim_G₂) / det_g_num 15/65 = 3/13
6 (p₂ + b₀) / α_sum 3/13
7 dim_K₇ / (b₂ + dim_K₇ + dim_G₂) 7/42 ≠ 3/13 ✗

(Expression 7 illustrates that not all combinations work; only those reducing to 3/13 are valid.)

Q_Koide = 2/3 (20 independent expressions):

# Expression Evaluation
1 p₂ / N_gen 2/3
2 dim_G₂ / b₂ 14/21 = 2/3
3 dim_F₄ / dim_E₆ 52/78 = 2/3
4 rank_E₈ / (Weyl + dim_K₇) 8/12 = 2/3
5 (dim_G₂ − rank_E₈) / (rank_E₈ + 1) 6/9 = 2/3

m_b/m_t = 1/42 (21 independent expressions):

# Expression Evaluation
1 b₀ / (2b₂) 1/42
2 (b₀ + N_gen) / PSL(2,7) 4/168 = 1/42
3 p₂ / (dim_K₇ + b₃) 2/84 = 1/42
4 N_gen / (dim(J₃O) + H*) 3/126 = 1/42
5 dim_K₇ / (dim_E₈ + dim(J₃O) + dim_K₇) 7/294 = 1/42

The ratio m_b/m_t = 1/42 = 1/(2b₂) illustrates structural redundancy: the bottom-to-top mass hierarchy equals the inverse of the structural constant 2b₂ = p₂ × b₂.

Note: The true Euler characteristic χ(K₇) = 0 for G₂ manifolds (odd-dimensional). The constant 42 is the structural invariant 2b₂.

24.5 The Algebraic Web

The topological constants satisfy interconnected identities:

Identity Left side Right side
Fiber-holonomy dim(G₂) = 14 p₂ × dim(K₇) = 2 × 7
Gauge moduli b₂ = 21 N_gen × dim(K₇) = 3 × 7
Matter-holonomy b₃ + dim(G₂) = 91 dim(K₇) × α_sum = 7 × 13
Fano order PSL(2,7) = 168 rank(E₈) × b₂ = 8 × 21
Fano order PSL(2,7) = 168 N_gen × fund(E₇) = 3 × 56
Anomaly sum α_sum = 13 rank(E₈) + Weyl = 8 + 5

These relations form a closed algebraic system. The mod-7 structure (dim(K₇) = 7 divides dim(G₂), b₂, b₃, PSL(2,7)) reflects the Fano plane underlying octonion multiplication.


References

  1. Joyce, D. D. (2000). Compact Manifolds with Special Holonomy. Oxford.
  2. Atiyah, M. F., Singer, I. M. (1968). The index of elliptic operators.
  3. Particle Data Group (2024). Review of Particle Physics.
  4. NuFIT 5.3 (2024). Global neutrino oscillation analysis.
  5. Planck Collaboration (2020). Cosmological parameters.

GIFT Framework - Supplement S2 Complete Derivations: 18 Dimensionless Relations