GIFT: Geometric Information Field Theory

5 SO(16) Decomposition

The decomposition \(E_8\supset \mathrm{SO}(16)\) reveals how GIFT topological invariants encode gauge bosons and fermions separately.

5.1 SO(n) Dimension

Definition 5.1 SO(n) Dimension
#

\(\mathrm{dim}(\mathrm{SO}(n)) = \frac{n(n-1)}{2}\)

Theorem 5.2 SO(16) = 120

\(\mathrm{dim}(\mathrm{SO}(16)) = \frac{16 \times 15}{2} = 120\)

Theorem 5.3 SO(7) = b2

\(\mathrm{dim}(\mathrm{SO}(7)) = \frac{7 \times 6}{2} = 21 = b_2\)

5.2 Spinor Representation

Definition 5.4 SO(16) Spinor

The chiral spinor of \(\mathrm{SO}(16)\) has dimension \(2^8/2 = 128\).

Theorem 5.5 Spinor from Octonions

\(2^{|\mathrm{Im}(\mathbb {O})|} = 2^7 = 128\)

5.3 Geometric and Spinorial Parts

Definition 5.6 Geometric Part

The geometric part encodes K\(_7\) topology:

\[ \mathrm{geom} = b_2+ b_3+ \mathrm{dim}(G_2) + \mathrm{rank}(E_8) = 21 + 77 + 14 + 8 \]
Theorem 5.7 Geometric = SO(16)

\(b_2+ b_3+ \mathrm{dim}(G_2) + \mathrm{rank}(E_8) = 120 = \mathrm{dim}(\mathrm{SO}(16))\)

Definition 5.8 Spinorial Part

The spinorial part: \(2^{|\mathrm{Im}(\mathbb {O})|} = 128\)

Theorem 5.9 Spinorial = 128

The spinorial part equals the \(\mathrm{SO}(16)\) spinor dimension.

5.4 Master Decomposition

Theorem 5.10 E8 = SO(16) + Spinor
\[ \mathrm{dim}(E_8) = 248 = 120 + 128 = \mathrm{geom} + \mathrm{spin} \]
Theorem 5.11 Gauge-Fermion Split

Physical interpretation:

  • 120 = topology + holonomy + Cartan \(\to \) gauge bosons

  • 128 = \(2^7\) from octonions \(\to \) fermions