GIFT: Geometric Information Field Theory

3 Foundations: G2 Cross Product

The 7-dimensional cross product is intimately connected to octonion multiplication and defines the \(G_2\) holonomy structure.

3.1 The Fano Plane

Definition 3.1 Fano Plane Lines
#

The Fano plane has 7 lines (cyclic triples):

\[ \{ 0,1,3\} , \{ 1,2,4\} , \{ 2,3,5\} , \{ 3,4,6\} , \{ 4,5,0\} , \{ 5,6,1\} , \{ 6,0,2\} \]
Theorem 3.2 Fano Line Count

The Fano plane has exactly 7 lines.

Definition 3.3 Epsilon Tensor
#

The structure constants \(\varepsilon _{ijk}\) for the 7D cross product:

  • \(\varepsilon _{ijk} = +1\) for \((i,j,k)\) a cyclic permutation of a Fano line

  • \(\varepsilon _{ijk} = -1\) for anticyclic permutations

  • \(\varepsilon _{ijk} = 0\) otherwise

3.2 Cross Product Definition

Definition 3.4 7D Cross Product
#

For \(u, v \in \mathbb {R}^7\), the cross product is:

\[ (u \times v)_k = \sum _{i,j} \varepsilon _{ijk} \, u_i \, v_j \]
Theorem 3.5 Epsilon Antisymmetry

For all \(i, j, k\): \(\varepsilon _{ijk} = -\varepsilon _{jik}\)

3.3 Cross Product Properties

Theorem 3.6 B2: Bilinearity

The cross product is bilinear:

\begin{align} (au + v) \times w & = a(u \times w) + v \times w \\ u \times (av + w) & = a(u \times v) + u \times w \end{align}
Theorem 3.7 B3: Antisymmetry

\(u \times v = -v \times u\)

Proof

Follows from \(\varepsilon _{ijk} = -\varepsilon _{jik}\) and sum reindexing.

Corollary 3.8 Cross Self Vanishes
#

\(u \times u = 0\)

3.4 Lagrange Identity (B4)

Definition 3.9 Epsilon Contraction

\(\displaystyle \sum _k \varepsilon _{ijk} \varepsilon _{lmk}\)

Definition 3.10 Coassociative 4-form
#

The 7D correction to the Kronecker formula:

\[ \psi _{ijlm} = \sum _k \varepsilon _{ijk}\varepsilon _{lmk} - (\delta _{il}\delta _{jm} - \delta _{im}\delta _{jl}) \]
Lemma 3.11 Psi Antisymmetry

\(\psi _{ijlm} = -\psi _{ljim}\) (verified for all \(7^4 = 2401\) index combinations)

Lemma 3.12 Psi Contraction Vanishes

\(\displaystyle \sum _{i,j,l,m} \psi _{ijlm} \, u_i u_l v_j v_m = 0\)

Proof

Antisymmetric tensor \(\psi \) contracted with symmetric \(u_i u_l\) vanishes.

Theorem 3.13 B4: Lagrange Identity
\[ \| u \times v \| ^2 = \| u \| ^2 \| v \| ^2 - \langle u, v \rangle ^2 \]
Proof

Expand \(\| u \times v\| ^2\) via coordinate sums. The \(\varepsilon \)-contraction decomposes into Kronecker deltas plus \(\psi _{ijlm}\) terms. By antisymmetry of \(\psi \) (verified for all 2401 cases), the \(\psi \)-terms vanish under symmetric contraction \(u_i u_l v_j v_m\). The Kronecker terms yield \(\| u\| ^2 \| v\| ^2 - \langle u,v \rangle ^2\).