GIFT: Geometric Information Field Theory

19 Summary and Status

19.1 Proof Status Overview

Module

Theorems

Status

E8 Lattice

15

 

G2 Cross Product

10

Octonion structure, G2 characterizations pending

Betti Numbers

8

 

SO(16) Decomposition

11

 

Fibonacci/Lucas

20

 

Prime Atlas

20

 

Heegner Numbers

10

 

Monster Group

15

 

McKay Correspondence

12

 

Joyce Theorem

10

 

Physical Relations

50+

 

TCS Spectral Bounds

15

(v3.3.13)

Literature Axioms (Langlais/CGN)

8

(v3.3.13)

Physical Spectral Gap (13/99)

28

(v3.3.16, zero axioms)

Selberg Bridge

8

(v3.3.16, algebraic identities)

Mollified Dirichlet Polynomial

9

(v3.3.16)

GIFT-Zeta Correspondences

20+

(v3.3.16)

Total

290+

19.2 Key Results

The GIFT framework achieves:

  • 0.087% mean deviation across 18 dimensionless predictions

  • 250+ formally verified relations in Lean 4

  • Complete Fibonacci/Lucas embeddings (\(F_3\)–\(F_{12}\), \(L_0\)–\(L_9\))

  • 100% prime coverage \({\lt} 200\) via three generators

  • All 9 Heegner numbers GIFT-expressible

  • Monster dimension \(196883 = 47 \times 59 \times 71\) from \(b_3\)

  • Joyce existence theorem for torsion-free \(G_2\) on \(K_7\)

  • TCS spectral bounds: \(\lambda _1 \sim 1/L^2\) (Model Theorem)

  • Literature axioms: Langlais 2024 spectral density, CGN 2024 bounds

  • Physical spectral gap \(\lambda _1 = 13/99\): axiom-free from Berger classification

  • Selberg bridge: trace formula connecting \(S_w(T)\) to spectral gap

  • Mollified Dirichlet polynomial \(S_w(T)\): constructive core, zero axioms

  • GIFT-zeta correspondences: 5 primary matches (\({\lt} 1\% \) relative error)

  • Multiples of 7 pattern: \({\gt} 96\% \) match rate (2222/2300 tested)