GIFT: Geometric Information Field Theory

4 Algebraic Foundations

4.1 Octonion Structure

Definition 4.1 Imaginary Octonion Count
#

The octonions \(\mathbb {O}\) have 7 imaginary units: \(|\mathrm{Im}(\mathbb {O})| = 7\)

Definition 4.2 G2 Dimension
#

\(\mathrm{dim}(G_2) = 14\)

4.2 Betti Numbers from Octonions

Definition 4.3 Second Betti Number
#

\(b_2= \binom {7}{2}\) (pairs of imaginary octonion units)

Theorem 4.4 b2 Value
#

\(b_2= 21\)

Definition 4.5 E7 Fundamental
#

\(\mathrm{fund}(E_7) = 56\)

Theorem 4.6 E7 Decomposition

\(\mathrm{fund}(E_7) = 2 \cdot b_2+ \mathrm{dim}(G_2) = 42 + 14 = 56\)

Definition 4.7 Third Betti Number

\(b_3= 3 \cdot b_2+ \mathrm{dim}(G_2)\)

Theorem 4.8 b3 Value
#

\(b_3= 77\)

Theorem 4.9 b3 from E7

\(b_3= b_2+ \mathrm{fund}(E_7) = 21 + 56 = 77\)

Definition 4.10 H-star
#

\(H^*= b_2+ b_3+ 1 = 99\)