GIFT: Geometric Information Field Theory

18 GIFT-Zeta Correspondences

GIFT topological constants appear as (or near) Riemann zeta zeros. This chapter formalizes these empirical correspondences, the spectral interpretation, and the structural role of \(\mathrm{dim}(K_7) = 7\). All proximity bounds are proven from axiomatized zero values (Odlyzko tables, 6-decimal precision).

18.1 Axiomatized Zeta Zero Sequence

Definition 18.1 Zeta Zero Sequence
#

The sequence \(\gamma _n\) (\(n \in \mathbb {N}^+\)) of positive imaginary parts of non-trivial zeros of the Riemann zeta function: \(\zeta (\tfrac {1}{2} + i\gamma _n) = 0\), \(\gamma _n {\gt} 0\).

Theorem 18.2 Positivity
#

\(\gamma _n {\gt} 0\) for all \(n\).

Theorem 18.3 Monotonicity
#

The sequence \((\gamma _n)\) is strictly increasing.

Definition 18.4 Spectral Parameter
#

The spectral parameter arising from the functional equation \(\zeta (s) = \zeta (1-s)\):

\[ \lambda _n = \gamma _n^2 + \frac{1}{4} \]

At \(s = \tfrac {1}{2} + i\gamma \): \(s(1-s) = \tfrac {1}{4} + \gamma ^2\).

Theorem 18.5 Spectral Parameters Positive
#

\(\lambda _n {\gt} 0\) for all \(n\).

Theorem 18.6 Spectral Parameters Increasing
#

The spectral parameters \((\lambda _n)\) are strictly increasing.

18.2 Primary Correspondences

Five GIFT constants appear within \({\lt} 1\% \) relative error of specific zeta zeros. The bounds below are proven from axiomatized 6-decimal approximations.

Theorem 18.7 Correspondence 1: \(\gamma _1 \approx \mathrm{dim}(G_2)\)
\[ |\gamma _1 - \mathrm{dim}(G_2)| {\lt} \frac{14}{100} \]

The first zeta zero (\(14.1347\ldots \)) is within \(0.96\% \) of \(\mathrm{dim}(G_2) = 14\).

Theorem 18.8 Correspondence 2: \(\gamma _2 \approx b_2\)
\[ |\gamma _2 - b_2| {\lt} \frac{3}{100} \]

The second zeta zero (\(21.0220\ldots \)) is within \(0.10\% \) of \(b_2= 21\).

Theorem 18.9 Correspondence 3: \(\gamma _{20} \approx b_3\)
\[ |\gamma _{20} - b_3| {\lt} \frac{15}{100} \]

The 20th zeta zero (\(77.1448\ldots \)) is within \(0.19\% \) of \(b_3= 77\).

Theorem 18.10 Correspondence 4: \(\gamma _{60} \approx 163\)
\[ |\gamma _{60} - 163| {\lt} \frac{4}{100} \]

The 60th zeta zero (\(163.0307\ldots \)) is within \(0.02\% \) of the largest Heegner number \(163\).

Theorem 18.11 Heegner 163 from \(E_8\)

\(163 = |\mathrm{Roots}(E_8)| - b_3= 240 - 77\).

Theorem 18.12 Correspondence 5: \(\gamma _{107} \approx \mathrm{dim}(E_8)\)
\[ |\gamma _{107} - \mathrm{dim}(E_8)| {\lt} \frac{11}{100} \]

The 107th zeta zero (\(248.1020\ldots \)) is within \(0.04\% \) of \(\mathrm{dim}(E_8) = 248\).

Theorem 18.13 All Primary Correspondences

The five correspondences hold simultaneously.

18.3 Relative Precision

Theorem 18.14 \(\gamma _1\) within 1% of \(\mathrm{dim}(G_2)\)
\[ \frac{|\gamma _1 - \mathrm{dim}(G_2)|}{\mathrm{dim}(G_2)} {\lt} \frac{1}{100} \]
Theorem 18.15 \(\gamma _2\) within 0.15% of \(b_2\)
\[ \frac{|\gamma _2 - b_2|}{b_2} {\lt} \frac{15}{10000} \]

18.4 Spectral Interpretation

The Berry–Keating conjecture posits a self-adjoint operator \(H\) whose eigenvalues are the spectral parameters \(\lambda _n\). The correspondences suggest a connection to the Laplacian on \(K_7\).

Definition 18.16 Spectral Match
#

A GIFT constant \(C\) has a spectral match at index \(n\) with precision \(p\) if:

\[ \frac{|\lambda _n - C^2|}{C^2} {\lt} \frac{p}{100} \]
Theorem 18.17 Squared Constants
#

Reference squared values: \(14^2 = 196\), \(21^2 = 441\), \(77^2 = 5929\), \(163^2 = 26569\), \(248^2 = 61504\).

Definition 18.18 Spectral Hypothesis

Conjecture: \(\exists \, n_1, n_2, n_{20}, n_{60}, n_{107}\) such that \(\lambda _{n_i}\) matches \(C_i^2\) within specified precision.

Theorem 18.19 Unified Ratio
\[ \frac{\mathrm{dim}(G_2)}{H^*} = \frac{14}{99} \]

This ratio appears in both the GIFT mass gap (\(\lambda _1 = 14/99\)) and the first zeta zero (\(\gamma _1 \approx 14\)).

18.5 Multiples of \(\mathrm{dim}(K_7) = 7\)

Numerical evidence shows that \({\gt} 96\% \) of multiples of 7 are matched by a nearby zeta zero (2222 out of \(\sim \)2300 tested, holdout set zeros 100k–500k).

Definition 18.20 Matched Multiple
#

A multiple \(7k\) is matched if \(\exists \, n : |\gamma _n - 7k| / (7k) {\lt} 0.5\% \).

Theorem 18.21 \(\mathrm{dim}(G_2) = 2 \times 7\)
#

\(\mathrm{dim}(G_2) = 2 \cdot \mathrm{dim}(K_7)\)

Theorem 18.22 \(b_2= 3 \times 7\)
#

\(b_2= 3 \cdot \mathrm{dim}(K_7)\)

Theorem 18.23 \(b_3= 11 \times 7\)
#

\(b_3= 11 \cdot \mathrm{dim}(K_7)\)

Theorem 18.24 \(H^*= 14 \times 7 + 1\)

\(H^*= 14 \cdot \mathrm{dim}(K_7) + 1\)

Theorem 18.25 163 \(\not\equiv \) 0 (mod 7)

\(163 \equiv 2 \pmod{7}\)

Theorem 18.26 248 \(\not\equiv \) 0 (mod 7)
#

\(248 \equiv 3 \pmod{7}\)

Theorem 18.27 Density Factor
#

\(\frac{7}{2\pi } \in (1.11, 1.12)\), ensuring high density of zeros near each multiple of 7.

18.6 Master Certificate

Complete verification: all five primary correspondences hold and the structural identities \(14 = 2 \times 7\), \(21 = 3 \times 7\), \(77 = 11 \times 7\) are confirmed.

Remark 18.29 Epistemic Status
#

The correspondences are empirical observations, not proven theorems about the Riemann zeta function. The proximity bounds are proven from axiomatized zero values, but the question of why GIFT constants appear near zeta zeros remains open.