GIFT: Geometric Information Field Theory

9 Monstrous Moonshine

Monstrous moonshine connects the Monster group to modular functions via its dimension and the \(j\)-invariant.

9.1 Monster Dimension

Definition 9.1 Monster Dimension
#

The smallest faithful representation: \(196883\)

Theorem 9.2 Monster Factorization

\(196883 = 47 \times 59 \times 71\)

Theorem 9.3 Monster GIFT Expression

\(196883 = L_8 \times (b_3- L_6) \times (b_3- 6)\)

Theorem 9.4 Arithmetic Progression

\(47, 59, 71\) form an AP with common difference \(12 = \mathrm{dim}(G_2) - p_2\)

9.2 j-Invariant

Definition 9.5 j Constant Term
#

\(j(\tau ) = q^{-1} + 744 + 196884q + \ldots \)

Theorem 9.6 j = 3 x E8

\(744 = N_{\mathrm{gen}} \times \mathrm{dim}(E_8) = 3 \times 248\)

Theorem 9.7 j = E8 + E8xE8
#

\(744 = \mathrm{dim}(E_8) + \mathrm{dim}(E_8\times E_8) = 248 + 496\)